MIC-RON.RU

В помощь радиолюбителю

В помощь радиолюбителю
МАЛОСИГНАЛЬНЫЙ ТРАКТ ТРАНСИВЕРА "АМАТОР ЭМФ-М"

МАЛОСИГНАЛЬНЫЙ ТРАКТ ТРАНСИВЕРА "АМАТОР ЭМФ-М"




Трансивер предназначен для работы в радиолюбительских диапазонах 160, 80 и 40 метров в режимах CW и SSB. Чувствительность трансивера при соотношении сигнал/шум f0 дБ не хуже 1 мкВ. Избирательность по зеркальному каналу, не хуже 40 дБ. Диапазон ручной регулировки усиления, не менее 60 дБ. Выходная мощность на нагрузке 50 Ом не менее 8 Вт. Подавление побочных каналов, не хуже 40 дБ. Селективность трансивера по соседнему каналу при приеме и величина подавления нерабочей боковой полосы при передаче определяются характеристиками применяемого электромеханического фильтра.

В генераторе плавного диапазона трансивера в качестве активного элемента применен аналог лямбда диода. Схема работает при малых напряжениях 2,5 В и малых токах 200...250 мкА, Это исключает разогрев частотозадаю-щих элементов, что в свою очередь приводит к минимальному начальному выбегу частоты и к высокой стабильности.

Схема малосигнального тракта трансивера показана на рис.1. Основу его составляют активные балансные смесители, выполненные на ИМС типа К174ПС1. В режиме приема сигнал, пройдя диапазонные полосовые фильтры, раздельные для режимов приема и передачи, поступает на приемный вход платы (вывод 12). На микросхеме DA1 собран первый смеситель трансивера. Через контакты реле К.1 и трансформатор Т1 на микросхему подается напряжение с генератора плавного диапазона величиной 400...500 мВ. Нагрузкой DA1 служит электромеханический фильтр ZQ1. С ЭМФ сигнал поступает на второй смеситель, выполненный на ИМС DA2. Сюда же через контакты реле К2 и трансформатор Т2 подается напряжение с генератора опорной частоты 500кГц. Генератор опорной частоты выполнен на транзисторе VT1. С вывода 3 микросхемы DA2 низкочастотный сигнал поступает на усилитель НЧ на микросхеме DA3.



В режиме приема предусмотрена возможность регулировки усиления по ПЧ. Напряжение регулировки, снимаемое с движка переменного резистора, подключенного к источнику питания +12 В, подается на вывод 4 платы.

В режиме передачи сигнал с микрофона подается на вывод 3 платы. Через фильтр C7,L1,C3 он поступает на первый смеситель на микросхеме DA1, где смешивается с частотой опорного генератора 500кГц. Получившийся в результате DSB сигнал подается на фильтр ZQ 1, который выделяет однополосный сигнал верхней боковой частоты. Подстроечный резистор R3 служит для балансировки смесителя по максимуму подавления несущей.

В смесителе на DA2 происходит перенос однополосного сигнала на одну из частот радиолюбительского диапазона. С вывода 2 микросхемы DA2 сигнал, через полосовые диапазонные фильтры подается на усилитель мощности.

Реле К1 и К2 коммутируют сигналы генератора плавного диапазона и генератора опорной частоты при переходе с приема на передачу.

Монтаж малосигнального тракта выполнен на печатной плате размером 130х60мм (рис. 2) из фольгированного стекло-текстолита. Расположение деталей на ней показано на рис.3.

При монтаже использованы резисторы типа MJIT 0,25. Конденсаторы постоянной емкости - КМ, КЛС, электролитические - К50-16. Трансформаторы Т1, Т2 выполнены на кольцевых ферритовых (проницаемость 400- 600НН) магнитопроводах типоразмера К7х4х2мм. Проводом ПЭВ-2 0,2 мм намотано 2х30 витков.

Настройка тракта особенностей не имеет.

Особо поговорим о телеграфном гетеродине. Многие радиолюбители сталкивались с проблемой приобретения кварцевого резонатора для формирователя телеграфного сигнала, опорного генератора. Несмотря на то, что в последнее десятилетие во многих городах появились радиорынки и магазины, торгующие практически любыми радиокомпонентами, проблема не исчерпала себя. А радиолюбители, живущие вдали от крупных городов? Им вообще порой приходится использовать только то, что есть под руками, выпаянное из старой радиоаппаратуры.

Между тем проблема оказалась решаема в домашних условиях и вниманию читателей предлагается вариант генератора с использованием самодельного резонатора. Стабильность устройства достаточна для того, чтобы его можно было использовать в качестве опорного генератора 500кГц.

Для изготовления резонатора можно использовать пьезокерамический фильтр типа ПФ1П-2 (ПФ1П). Такой фильтр в свое время применялся в транзисторных радиовещательных приемниках "Геолог", "Меридиан", "Спорт-2" и др. Аккуратно, ножом или ножовкой, отделяем крышку фильтра от донышка. К донышку монтажными проводами прикреплен сам фильтр, который представляет собой пластмассовое основание с восьмью ячейками закрытое двумя гетинаксовыми боковинами. Между боковинами, в ячейках, с помощью посеребренных пружинных шайб, закреплены пьезокерамические диски. Аккуратно высверлив две алюминиевые заклепки, скрепляющие боковины, разбираем фильтр и извлекаем диски. В фильтре находятся 4 тонких диска и 4 толстых. Для изготовления резонатора подходят толстые диски.

Схема CW генератора показана на рис.4. Она традиционная и каких-либо особенностей не имеет. Печатная плата генератора приведена на рис.5.



Изготавливаем плату и собираем генератор. Для крепления резонатора к печатной плате необходимы детали (2шт.), показанные на рис.6. Их можно изготовить из фосфористой бронзы или другого пружинящего материала. Отступив на 3 мм от края детали (см. рис.6), керном или гвоздем, делаем вытяжку металла.


Образовавшиеся выступы слегка припиливаем надфилем так, чтобы образовались плоскости диаметром 0,5-1мм. Это необходимо для более надежного и равномерного контакта с диском. Держатели устанавливаем на плату генератора так чтобы выступы были соосны (рис.7) и диск устанавливался без перекосов.


Подключив к выходу генератора частотомер и замкнув на общий провод, правый по схеме вывод резистора R3, подаем питание на схему. Между держателями вставляем диск и замеряем частоту генератора. Подгонку частоты резонатора производят путем уменьшения внешнего диаметра диска, обтачивая его равномерно по окружности на наждачной бумаге "нулевке" или с помощью алмазного надфиля. Обтачивают диск до тех пор, пока не будет получена частота генерации 500,7...501кГц. Перед очередным измерением диск протирают спиртом. Контролировать частоту в процессе подгонки надо как можно чаще. По такой же методике можно изготовить резонаторы опорных частот 500 кГц и 503,7кГц.

И. Пташчик (UY5UM) пос. Буча, Киевская область,Украина.

Литература

1. А. Темерев. Трансивер "Аматор - ЭМФ". - "Радиоаматор", 1996, N 11, с. 18-19.

2. В. Голуб. Микротрансивер "Тополь". - KB журнал, 1994, N 3, с. 26-27.

KB ЖУРНАЛ N 6,1998.Г.
 
ВЧ МОДЕМ KB ТРАНСИВЕРА

ВЧ МОДЕМ KB ТРАНСИВЕРА




Создание простого радиочастотного тракта для коротковолнового трансиве-ра давно волновала умы радиолюбителей-конструкторов. Впервые ее разрешили разработчики трансивера "РАДИО-76" - конструкции на долгие годы ставшей популярной не только для начинающих коротковолновиков, но и для более опытных. Автор этих строк разработал несколько конструкций, с описаниями которых читатель уже успел познакомиться в предыдущих номерах "KB журнала" [1, 6]¦. Несмотря на ряд достоинств они не обладали универсальностью при построении всеволновой аппаратуры. Их применение ограничивалось НЧ диапазонами (160, 80 и 40 метров) вследствие использования относительно низкого значения промежуточной частоты (обычно 500 кГц). Очередной ступенью стало создание ВЧ модема (высокочастотного модулятора/демодулятора). По сравнению с вышеупомянутыми РЧ трактами, он имеет ряд преимуществ, а именно:
использованные решения позволяют выбирать без значительных переделок в схеме любое значения ПЧ:
применение 50-омных узлов при дальнейшей модернизации упрощает согласование вновь вводимых узлов;
использование в схеме транзисторов средней мощности при большом токе коллектора повышает перегрузочные характеристики усилителей.

Данный модем в составе трансивера конструкции автора сравнивался в режимах RX и ТХ с трансивером "Урал-84" (преимущественно на диапазонах 160, 80 и 40 метров). Авторский вариант имел большую "прозрачность" эфира и позволял принимать слабые станции на фоне сильных помех даже тогда, когда этого не мог сделать "Урал-84" с выключенной системой АРУ. Подавление несущей превосходило аналогичный параметр "Урала" более чем на 20 дБ. Небольшое усиление по ПЧ позволило получить очень чистый и объемный сигнал в режимах RX и ТХ. Субъективно модем работает значительно лучше (даже без подчисточ-ных фильтров), чем трансивер со значительным (основным) усилением по ПЧ. На основе ВЧ модема можно построить вседиапазонный KB трансивер. В качестве ФОС возможно использование электромеханического (ЭМФ) или кварцевого фильтра. Применение кварцевого фильтра на частоты 40...50 МГц позволяет построить трансивер с преобразованием "вверх", а применяя фильтры на частоты 5... 10 МГц несложно изготовить аппарат на все любительские KB диапазоны с одним преобразованием частоты.

Возможность выбора практически любого значений промежуточной частоты достигнуто применением в качестве усилителей ПЧ и гетеродинного буфера-усилителя широкополосных усилителей (ШПУ) с использованием широкополосных трансформаторных линий (ШПТЛ). В качестве активного элемента ШПУ применяются распространенные СВЧ транзисторы.

Измерение параметров трансивера на основе ВЧ модема проводились в диапазоне 160 метров, поэтому в дальнейшем мы будем говорить об одно диапазонном варианте. В ходе испытаний были получены следующие результаты:

- чувствительность (при отношении сигнал/шум 10 дБ на выходе усилителя 3Ч трансивера) - 0,25 мкВ;

- избирательность по зеркальному каналу - не менее 50 дБ;

- избирательность по соседнему каналу (зависящая от качества применяемого ЭМФ) составила 75 дБ.

Высокая чувствительность получена с антенного входа, без применения усилителя РЧ и при затухании в входном полосовом фильтре 10 дБ.

Принципиальная схема ВЧ модема приведена на рис.1 . Для упрощения, все стыкуемые с ним узлы показаны условно. В режиме приема РЧ сигнал из антенны через ступенчатый аттенюатор , двухзвенный полосовой фильтр проходит на обмотку трансформатора Т1 первого смесителя (СМ1) . Смеситель выполнен на кремниевых диодах VD1 -VD4 по двойной балансной кольцевой схеме. На обмотку трансформатора Т2 СМ1 через буфер-усилитель, выполненного по схеме ШПУ на СВЧ транзисторе VT3 типа КТ606А, подается напряжение с ГПД. Генератор плавного диапазона может быть выполнен по любой схеме. Сигнал промежуточной частоты 500 кГц снимается со средней точки симметрирующего трансформатора Т1 и через нормально замкнутый контакт реле К1 подается на вход первого каскада усилителя ПЧ. УПЧ1 выполнен по схеме широкополосного усилителя (ШПУ) с отрицательно обратной связью [2] на транзисторе VT1. Усилители данного типа обладают низким уровнем шумов, высокой линейностью АЧХ, мало зависящим от частоты входным и выходным сопротивлением (близким к 50 Ом), сравнительно большим динамическим диапазоном. Коэффициент усиления таких ШПУ составляет 20...22 дБ.





Далее усиленный сигнал через цепи согласования Т4 ,С10 ,С11 поступает на ФОС, в качестве которого применен ЭМФ-500-9Д-ЗН. Фильтр выделяет сигнал ПЧ с нижней боковой полосой. На выходе фильтра так же установлены цепи согласования Т5, С12, С13 аналогичные входным. Если назначение трансформатора Т4 (коэффициент трансформации 1:4) согласовать низкое выходное сопротивление УПЧ 1 (50 Ом) с высоким входным сопротивлением ЭМФ (типовое 100...200 Ом) , то назначение Т5 сделать обратное. После ФОС установлен УПЧ 2 на транзисторе VT2 , повторяющий схему УПЧ 1.

Применение двух идентичных каскадов УПЧ диктуется некоторыми потерями полезного сигнала в ЭМФ и цепях его согласования, достигающих уровня 15 дБ. Если в распоряжении радиолюбителя окажется ЭМФ с малым затуханием и его удастся хорошо согласовать, то есть вероятность возникновения излишнего усиления по ПЧ. В таком случае можно попробовать снизить усиление каскадов до 10 дБ. Для этого в УПЧ 1 следует поменять местами резисторы R4 и R5, а в УПЧ2 соответственно R10 и R11.

Сигнал НБП с выхода УПЧ2 через нормально замкнутые контакты реле К2 подается на второй смеситель (СМ2) , выполненный аналогично первому. Сюда же поступают колебания частотой 500 кГц от опорного кварцевого генератора (ОКГ) выполненного на транзисторах VT4 и VT5 . Оба транзистора ОКГ включены по схеме с общим коллектором, по этому схема обладает хорошими нагрузочными способностями. Имеется также возможность при помощи резистора R23 устанавливать уровень выходного напряжения генератора необходимого для нормальной работы СМ2.

Продуктом преобразования сигналов ПЧ и ОКГ в смесителе 2 является сигнал звуковой частоты (3Ч). Этот сигнал выделяется на конденсаторе С37 и через разделительный конденсатор С38 подается на вход высокочувствительного усилителя 3Ч. Схема УЗЧ не приводится, но следует иметь ввиду, что как и в предыдущих конструкциях автора он должен обладать чувствительностью в несколько единиц микровольт [4]. Критерий годности УЗЧ для работы с ВЧ модемом: он должен чувствовать шумы УПЧ2 при его подключении к СМ2.

В режиме передачи (ТХ) сигнал с микрофонного усилителя-ограничителя через конденсатор С38 подводится к средней точке симметрирующего трансформатора Т8 СМ2, а именно к конденсатору С37. На второй трансформатор Т9, как и в режиме приема, поступают колебания 500 кГц от ОКГ В результате на обмотке Т8 образуется DSB-сигнал с частотой 500 кГц. Несколько слов о микрофонном усилителе-ограничителе. Поскольку в конструкции не предусмотрена регулировка усиления по ПЧ, то совместно с ВЧ модемом следует применять микрофонный усилитель-ограничитель с плавной регулировкой выходного напряжения после каскадов ограничителей. Такое решение полностью исключает перегрузку всего тракта в режиме ТХ и дает возможность регулировать выходную мощность передатчика.

Итак, DSB-сигнал. через коммутатор поступает на УПЧ. Для изменения направления прохождения сигнала при переходе с приема на передачу применен коммутатор выполненный на реле К1 , К2 и КЗ. Принцип изменения направления прост и понятен из рис. 1.

Сигнал DSB через УПЧ 1 поступает на ФОС, где из него выделяется SSB сигнал с нижней боковой полосой 497.2...499.8 кГц. Далее сигнал усиливается УПЧ2. Применение двух каскадов УПЧ в режиме ТХ (как и в режиме RX) позволяет полностью скомпенсировать потери в СМ1 , СМ2 , ФОС, коаксиальных соединительных линиях (даже с некоторым запасом, которого хватает и на ПФ). С выхода УПЧ2 усиленный SSB-сигнал подается на СМ1, происходит его смешивание с сигналом ГПД.

На выходе смесителя (Т1) образуется рабочий однополосный сигнал с частотами 1860... 1930 кГц, т.е. лежащий в SSB-участке диапазона 160 метров. Однако наряду с рабочим SSB-сигна-лом на выходе смесителя образуется и зеркальный сигнал с частотами 860...930 кГц, создающий паразитные излучения вне частот любительского диапазона.

С подавлением более чем на 40 дБ зеркального канала прекрасно справляется полосовой фильтр (ПФ) используемый без переключения в режимах ТХ и RX. Отфильтрованный сигнал через контакты реле КЗ подается на усилитель мощности и далее в антенну. Конструктивно ВЧ модем выполнен в корпусе спаянном из фольгированно-го стеклотекстолита на 8-ми печатных платах, тщательно экранированных друг от друга. Межплатные соединения выполнены 50-Омным коаксиальным кабелем минимальной длинны. На каждой отдельной плате монтируется по одному самостоятельному узлу:

Смеситель 1
УПЧ 1
Релейный коммутатор ФОС (ЭМФ и его цепи согласования)
УПЧ2
Буфер-усилитель ГПД
ОКГ на 500 кГц
Смеситель 2.

Трансформаторы Т1-Т9 наматывают проводом ПЭВ-2 диаметром 0,3...0,4 мм на ферритовых (1000НН, 2000НН) кольцах типоразмера К10х6х4 мм. Каждая из обмоток трансформаторов должна содержать по 7-8 витков. Намотку Т1, Т2, Т8 и Т9 ведут одновременно двумя, а намотку ТЗ...Т7 - тремя скрученными проводами, равномерно распределяя витки по периметру кольца. Отвод от середины получают соединением начала одной обмотки с концом другой. Резисторы, используемые в конструкции, обязательно должны быть безиндукци-онные. При установке на платы их выводы и выводы конденсаторов оставляют минимально возможной длинны.

Реле К1 - КЗ герконовые типа РЭС55А на рабочее напряжение 12В. Для настройки ВЧ модема потребуются некоторые измерительные приборы - авометр, генератор стандартных сигналов (ГСС), милливольтметр переменного тока и эквивалент нагрузки (500м).

Перед установкой в корпус каждую плату проверяют на соответствие монтажа принципиальной схеме и налаживают отдельно. Начинают настройку блоков модема с усилителей на VT1.VT2 и VT3. Прежде всего необходимо убедиться, что ток потребления каскадов УПЧ имеет величину порядка 25 мА, а ток потребления буфер-усилителя ГПД около 45 мА. Чтобы полностью исключить возможность самовозбуждения ШПУ при измерении, необходимо на вход и выход ШПУ подключить безиндукционные резисторы номиналом в 50 Ом. Желательно проверить диапазон рабочих частот усилителей и при необходимости провести соответствующую коррекцию. Для смещения рабочего диапазона вверх по частоте, уменьшить число витков или взять маг-нитопровод с меньшим значением проницаемости.

Налаживание ОКГ производится при отключенном от схемы кварцевом резонаторе и конденсаторах С29 и С30. Постоянное напряжение +6 В на эмиттерах транзисторов VT4, VT5 устанавливают подбором резисторов R21 и R25 соответственно. После этого необходимо убедиться в отсутствии какой-либо паразитной генерации. При установке в схему кварца и конденсаторов должна возникать устойчивая генерация с частотой 500 кГц и амплитудой до 1,5...2,5 В на нагрузке 50 Ом подключенной к конденсатору С36. Движок подстроенного резистора R23 (при этом) должен находиться в верхнем по схеме положении. Подбором емкостей конденсаторов С10.С11,С 12,С 13 производится согласование блока ФОС с 50-омной нагрузкой по минимуму затухания в полосе прозрачности ЭМФ. Для этого в среднюю точку трансформатора Т4 подается напряжение от генератора стандартных сигналов (ГСС) с 50-омным выходом, например Г4-18. А к средней точке Т5 подключают 50-Омный милливольтметр [1]. Для "нижних" ЭМФ частота ГСС устанавливается около 499 кГц, для "верхних" - около 501 кГц.

Резисторы R30-R33 устанавливаются только в случае возникновения самовозбуждения каскадов УПЧ, их номинал подбирается опытным путем. Однако следует учесть, что установка этих резисторов заметно ухудшает чувствительность модема в режиме приема.

Следующий этап настройки - установка оптимальных напряжений гетеродинов для СМ1 и СМ2. Движки резисторов R1 и R28 устанавливаем в среднее положение. На вход модема подают сигнал от ГСС частотой 1900 кГц, а на выход УЗЧ подключается милливольтметр переменного тока. Постепенно увеличивая напряжение гетеродинов, на соответствующих входах смесителей, и подбирая номиналы резисторов R2 и R29 необходимо добиться максимальных показаний милливольтметра [1,5,6].

Далее переводят модем в режим ТХ. Подключив микрофонный усилитель, который будет в дальнейшем использоваться в трансивере, добиваемся максимального подавления несущей оперируя вначале подстроечнымн элементами первого смесителя R1.C1.C2 , а затем элементами второго смесителя R28, С39, С40. Степень подавления контролируют милливольтметром, подключенном к выходной обмотке Т1 (прибор и методика описаны в [1, 5, 6]) по минимальным показаниям прибора. Затем, подключив микрофон и прослушивая сигнал контрольным приемником, устанавливают такой уровень модулирующего НЧ сигнала , чтобы не было заметно на слух искажений сформированного SSB-сигнала.

Как было отмечено выше, на базе данного ВЧ модема возможно построить вседиапазонный KB трансивер. Для этого необходимо в блоке ФОС заменить ЭМФ на кварцевый фильтр. Автор рекомендует 8-резонаторный, лестничного типа, как наиболее простой в изготовлении и настройке. Так же как и ЭМФ, кварцевый фильтр необходимо согласовать с 50-омными нагрузками. Проще всего это сделать при помощи широкополосных трансформаторов [2]. Усиление каскадов ПЧ необходимо ограничить уровнем 10 дБ на каскад, по методике описанной выше. Так как затухание в полосе прозрачности у кварцевых фильтров меньше, чем у ЭМФ, упомянутого уровня усиления по ПЧ вполне хватает для сохранения высокой чувствительности (авторский многодиапазонный вариант имел этот параметр около 0,1 мкВ!).

Схема ОКГ для модема с кварцевым ФОС показана на рис. 2. Конструкция работоспособна до 20 МГц, кварц возбуждается на основной гармонике. Номиналы деталей помеченные звездочкой при налаживании схемы подбирают исходя из следующих соображений: С*3=С*4 (их емкость в пикофарадах численно равна длине волны в метрах генерируемой кварцем). Иногда емкость С*4 выбирают в 1,5 раза больше емкости - С*3 для улучшения возбуждения резонаторов; емкостное сопротивление переходных конденсаторов С*5 и С*9 на частоте генерации кварца должно быть около 1к0м.


Puc.2

Для установки частоты ОКГ на нижний скат характеристики фильтра, по уровню -20 дБ, возможно придется последовательно с кварцевым резонатором включить конденсатор или индуктивность.

Владислав Артеменко (UT5UDJ), г. Киев. Украина

ЛИТЕРАТУРА

1. Артеменко В. РЧ-тракт транснвера с ЭМФ. - " КВ-журнал". 1997, N 2.

2. Рэд Э. Справочное пособие по высокочастотной схемотехнике. М. Изд. "Мир", 1990

3. Рэд Э. Схемотехника радиоприемников. - М. Изд. 'Мир", 1989.

4. Поляков В.Т. Радиолюбителям о технике прямого преобразования. М "Патриот". 1990.

5. Артеменко В. "О методах налаживания смесителей..." - "КВ-журнал", 1997, N 4;5

6. Артеменко В. "SSB-минитрансивер с ЭМФ на 160 М." - "КВ-журнал". 1997, N 6.

KB ЖУРНАЛ N 6, 1998 г.
 
МОЩНЫЙ ТРАНЗИСТОР В ЛАВИННОМ РЕЖИМЕ

МОЩНЫЙ ТРАНЗИСТОР В ЛАВИННОМ РЕЖИМЕ



А. ПИЛТАКЯН, г. Москва

Применение транзисторов в лавинном режиме позволяет упростить некоторые схемы, получить большие выходные напряжения, высокое быстродействие, не достигаемые при работе транзисторов в обычных режимах. Есть. однако, целый ряд причин, затрудняющих широкое использование лавинного режима работы транзисторов.

В первую очередь следует упомянуть значительный разброс лавинных параметров транзисторов и, как следствие, недостаточно высокую воспроизводимость характеристик устройств на транзисторах, работающих в подобном режиме. Кроме того, всегда есть большая опасность пробоя транзистора в процессе налаживания устройств.

Однако несмотря на формальные причины (отсутствие в технических условиях указания о возможности работы в режиме лавинного пробоя), применение обычных транзисторов в режиме лавинного пробоя вполне оправдано в радиоэлектронных устройствах, изготовляемых в единичных экземплярах, при проведении экспериментов, в радиолюбительских конструкциях и т. п.

Хорошие результаты можно получить при использовании в лавинном режиме мощного кремниевого транзистора П701А. На рис. 1 приведена схема генератора пилообразного напряжения, работающего в автоколебательном режиме.


рис. 1

Генератор вырабатывает пилообразные импульсы с частотой 20...250 Гц, 200...2500 Гц и 2000...25 000 Гц (положение 1, 2, 3 переключателя S1) и амплитудой - 120 В. На частотах выше 20 кГц амплитуда напряжения снижается до 100 В. Линейность пилообразного напряжения достаточно высока, ее ухудшение происходит лишь на самых низких частотах первого поддиапазона. Генератор легко синхронизируется внешним сигналом с частотой до сотен килогерц и напряжением от единиц вольт. Входное сопротивление для сигнала синхронизации - около 90 кОм. При напряжении питания 600 В генератор потребляет от 0,5 до 3 мА (большее значение соответствует большей частоте каждого поддиапазона).

При подключении генератора к источнику питания напряжение на коллекторе транзистора и конденсаторе С2. равное в начальный момент нулю (транзистор заперт), начинает экспоненциально возрастать со скоростью, определяемой постоянной времени цепи R5R6C2. При достижении на коллекторе транзистора некоторого напряжения он отпирается, конденсатор С2 разряжается через него. напряжение на конденсаторе резко падает до нуля, после чего процесс повторяется. Подавая в цепь базы переменное напряжение, можно управлять моментом открывания транзистора, чем и обеспечивать его синхронизацию.

Налаживание генератора сводится к подбору такого положения движка подстроечного потенциометра R4, при котором устойчивые колебания будут поддерживаться при любых положениях резистора R6 и переключателя SI. Если это не получается, то следует увеличить напряжение питания и. может быть, заменить транзистор.

При длительной работе генератора на высокочастотных участках поддиапазонов (резистор R6 в положении минимального сопротивления) возможен незначительный нагрев транзистора, чтобы избежать этого, транзистор целесообразно укрепить на радиаторе.

Генератор может работать без каких-либо изменений в схеме при напряжении питания от 300 до 800...1000 В. Амплитуда пилообразного напряжения генератора при этом изменяется незначительно, в то время как диапазон частот. перекрываемых генератором, с понижением питающего напряжения смешается в сторону низких (до 5...10 Гц), а при повышении - в область более высоких частот (до 30 кГц). Приведенные выше параметры генератора получены при питающем напряжении 600 В.

Имея такой генератор пилообразного напряжения, нетрудно собрать простейший осциллограф, например с трубкой 6Л01И. Схема такого "осциллографа-приставки" приведена на рис. 2. С его помощью можно наблюдать форму сигналов с амплитудой от 5 В в различных цепях телевизора. Напряжение питания на осциллограф подают от цепи вольтодобавки телевизора (500- 800 В).


рис. 2

Диапазон развертки используется только один - 2000...20 000 Гц. В этом случае напряжение смещения, достаточное для нормальной работы генератора, создается из-за протекания тока через резистор R2.

Пилообразное напряжение с коллектора транзистора через разделительный конденсатор СЗ поступает на горизонтальные отклоняющие пластины трубки. На вертикальные пластины исследуемое напряжение поступает через разделительный конденсатор С5 и потенциометр R6, регулирующий размер вертикального изображения. Это же напряжение поступает через разделительный конденсатор С1 и резистор R1 на потенциометр R2, служащий регулятором синхронизации. Потенциометры R9 и R8 служат для регулировки соответственно яркости и фокусировки. Резистор RIO и конденсатор С4 образуют фильтр, препятствующий проникновению в цепь питания помех строчной частоты. Конденсаторы, применяемые в осциллографе, должны быть рассчитаны на рабочее напряжение не менее 750 В. Потенциометр R4 - на мощность 2 Вт.

Для центровки луча трубки используется намагниченный отрезок железной проволоки, или винт диаметром 3...5 мм, или кусок ферритового корректирующего сердечника от отклоняющих систем телевизоров.

Магнит размещается непосредственно на колбе трубки и закрепляется в подобранном положении липкой лентой. Подключать осциллограф-приставку к телевизору удобно с помощью проводников с зажимами типа "крокодил". Исследуемый сигнал необходимо подавать на вход, используя экранированный кабель. Несмотря на то что в конструкции нет усилителя сигнала, возможно нежелательное воздействие на трубку помех от блока развертки телевизора. По этой причине при работе осциллограф необходимо располагать на достаточном расстоянии от блока развертки телевизора. При желании для осциллографа можно изготовить металлический экранирующий кожух.

Налаживание осциллографа производят в следующем порядке. Движок потенциометра R6 переводят в верхнее по схеме положение, а вывод 7 отклоняющей пластины трубки соединяют с выводом 9 (не отпаивая от С5 и R6}. Резистор R3 отсоединяют 6т плюсового провода. Подав на осциллограф напряжение питания, проверяют действие регуляторов R9 (яркость) и R8 (фокус) и. получив на экране светящееся пятно. перемешают его с помощью магнитного сердечника в центральную часть экрана. Далее отсоединяют вывод 7 от вывода 9 и восстанавливают соединение резистора R3 с плюсовым проводом. После этого на осциллограф вновь подают напряжение питания. На экране трубки при соответствующем положении регулятора яркости появится горизонтальная линия, длина которой при любом положении регулятора частоты R4 должна быть примерно одинаковой. Если развертки нет (вместо линии на экране точка), следует подать смещающее напряжение на базу транзистора от делителя, как на рис. 1, или заменить транзистор.

В осциллографе вместо трубки 6Л01И можно использовать практически любую осциллографическую трубку с напряжением на втором аноде до 1000 В.

При необходимости от генератора на лавинном транзисторе можно получить парафазное напряжение. На рис. 3 приведена схема такого генератора. В принципе, она не отличается от приведенных на рис. 1 и 2. Парафазное пилообразное напряжение получается за счет разделения сопротивления зарядной цепи (резисторы /?4и R5). Параметры генераторов, собранных по схемам рис. 1 и 3, одинаковы.


рис. 3

Хорошие результаты получаются, если транзистор П701А, работающий в режиме лавинного пробоя, использовать для усиления. На рис. 4 приведена схема усилителя, в котором для увеличения входного сопротивления применен транзистор П417. Полоса усиливаемых частот на уровне 0,7 составляет 50...20 000 Гц. Коэффициент усиления по напряжению, измеренный на частоте 4 кГц, составляет около 120. Входное сопротивление - более 100 кОм. Наибольшее выходное напряжение достигает 70 В (эфф.). Амплитудная характеристика усилителя линейна при изменении напряжения сигнала на входе от 0 до 0,6 В. При напряжении питания 600 В усилитель потребляет ток около 2 мА. Его очень удобно использовать совместно с описанными выше генераторами развертки в осциллографе.


рис. 4

Транзисторы в режиме лавинного пробоя работают лучше всего в схемах релаксационных генераторов. Однако при определенных условиях генератор на лавинном транзисторе может вырабатывать синусоидальные колебания. Генератор по схеме рис. 5 генерирует напряжение синусоидальной формы с частотой около 4 кГц и амплитудой более 110 В. При напряжении питания 600 В потребление тока составляет около 2 мА.


рис. 5

В качестве катушки индуктивности используется регулятор размера строк РЛС-70. Как форма, так и величина выходного напряжения генератора в сильной степени зависят от емкости конденсатора С1. Для изменения частоты колебаний необходимо подбирать сначала емкость конденсатора С2, а затем С1.

РАДИО №4 1979 г., с.38-40
 
РЕГУЛИРУЕМЫЙ АНАЛОГ ДИНИСТОРА

РЕГУЛИРУЕМЫЙ АНАЛОГ ДИНИСТОРА



М. МАРЬЯШ пос. Киропец Тернопольской обл.

Серийно выпускаемые динисторы по электрическим параметрам не всегда отвечают творческим интересам радиолюбителей-конструкторов. Нет, например, динисторов с напряжением включения 5...10 и 200...400 В. Все динисторы имеют значительный разброс значения этого классификационного параметра, который к тому же зависит еще от температуры окружающей среды. Кроме того, они рассчитаны на сравнительно малый коммутируемый ток (менее 0,2 А), а значит, небольшую коммутируемую мощность. Исключено плавное регулирование напряжения включения, что ограничивает область применения динисторов. Все это заставляет радиолюбителей прибегать к созданию аналогов динисторов с желаемыми параметрами.

Поиском такого аналога динистора длительное время занимался и я. Исходным был вариант аналога, составленный из стабилитрона Д814Д и тринистора КУ202Н (рис. 1). Пока напряжение на аналоге меньше напряжения стабилизации стабилитрона, аналог закрыт и ток через него не течет. При достижении напряжения стабилизации стабилитрона он открывается сам, открывает тринистор и аналог в целом. В результате в цепи, в которую аналог включен, появляется ток. Значение этого тока определяется свойствами тринистора и сопротивлением нагрузки. Используя тринисторы серии КУ202 с бук венными индексами Б, В, Н и один и т же стабилитрон Д814Д, произведено 32 измерения тока и напряжения включения аналога дннистора. Анализ показывает, что среднее значение тока включения аналога равно примерно 7 мА, а напряжения включения - 14,5±1 В. Разброс напряжения включения объясняется неодинаковостью сопротивления управляющих р-п переходов используемых тринисторов.



Напряжение включения Uвкл такого аналога можно рассчитать по упрощенной формуле: Uвкл=Uст+Uy.э., где Uст - напряжение стабилизации стабилитрона, Uу.э. - падение напряжения на управляющем переходе тринистора.

При изменении температуры тринистора падение напряжения на его управляющем переходе тоже изменяется, но незначительно. Это приводит к некоторому изменению напряжения включения аналога. Например, для тринистора КУ202Н при изменении температуры его корпуса от 0 до 50 °С напряжение включения изменялось в пределах 0,3...0,4 % по отношению к значению этого параметра при температуре 25 °С.



Далее был исследован регулируемый аналог динистора с переменным резистором R1 в цепи управляющего электрода тринистора (рис. 2). Семейство вольт-амперных характеристик такого варианта аналога показано на рис. 3, их пусковой участок - на рис. 4, а зависимость напряжения включения от сопротивления резистора - на рис. 5. Как показал анализ, напряжение включения такого аналога прямо пропорционально сопротивлению резистора. Это напряжение можно рассчитать по формуле Uвкл.p=Ucт+Uy.э.+Iвкл.y.э*R1, где Uвкл.p - напряжение включения регулируемого аналога, Iвкл.y.э - ток включения регулируемого аналога динистора по управляющему электроду.


рис. 3


рис. 4


рис. 5

Такой аналог свободен практически от всех недостатков динисторов, кроме температурной нестабильности. Как известно, при повышении температуры тринистора его ток включения уменьшается. В регулируемом аналоге это приводит к уменьшению напряжения включения и тем значительнее, чем больше сопротивление резистора. Поэтому стремиться к большому повышению напряжения включения переменным резистором не следует, чтобы не ухудшать температурную' стабильность работы аналога.

Как показали эксперименты, эта нестабильность небольшая. Так, для аналога с тринистором КУ202Н при изменении температуры его корпуса в пределах 20±10 °С напряжение включения изменялось: с резистором 1 кОм - на ±1,8 %. при 2 кОм - на ±2,6 %, при 3 кОм - на ±3 %, при 4 кОм - на ±3,8 %. Увеличение сопротивления на 1 кОм приводило к повышению напряжения порога включения регулируемого аналога в среднем на 20 % по сравнению с напряжением включения исходного аналога динистора. Следовательно, средняя точность напряжения включения регулируемого аналога лучше 5%.

Температурная нестабильность аналога с тринистором КУ101Г меньше, что объясняется относительно малым током включения (0,8...1,5 мА). Например, при таком же изменении температуры и резисторе сопротивлением 10, 20, 30 и 40 кОм температурная нестабильность была соответственно ±0,6%. ±0,7%, ±0,8%. ±1%. Увеличение сопротивления резистора на каждые 10 кОм повышало уровень напряжения включения аналога на 24 % по сравнению с напряжением аналога без резистора. Таким образом, аналог с тринистором КУ101Г обладает высокой точностью напряжения включения - его температурная нестабильность менее 1%, а с тринистором КУ202Н - несколько худшей точностью напряжения включения (в этом случае сопротивление резистора Rt должно быть 4,7 кОм).

При обеспечении теплового контакта между тринистором и стабилитроном температурная нестабильность аналога может быть еще меньшей, поскольку у стабилитронов с напряжением стабилизации больше 8 В температурный коэффициент напряжения стабилизации положителен, а температурный коэффициент напряжения открывания тринисторов отрицателен.

Повысить термостабильность регулируемого аналога динистора с мощным тринистором можно включением переменного резистора в анодную цепь маломощного тринистора (рис. 6). Резистор R1 ограничивает ток управляющего электрода тринистора VS1 и повышает напряжение включения его на 1...2%. А переменный резистор R2 позволяет регулировать напряжение включения тринистора VS2.


рис. 6

Улучшение температурной стабильности такого варианта аналога объясняется тем, что с увеличением сопротивления резистора R2 уменьшается ток включения аналога по управляющему электроду и увеличивается ток включения его по аноду. А так как с изменением температуры в этом случае ток управляющего электрода уменьшается меньше и что суммарный ток включения аналога увеличивается, то для эквивалентного повышения напряжения включения аналога нужно меньшее сопротивление резистора R2 - это и создает благоприятные условия для повышения температурной стабильности аналога.

Чтобы реализовать термостабильность такого аналога, ток открывания тринистора VS2 должен быть 2...3 мА --больше тока открывания тринистора VS1, чтобы его температурные изменения не влияли на работу аналога. Эксперимент показал, что напряжение включения термостабильного аналога при изменении температуры его элементов от 20 до 70 °С практически не изменилось.

Недостаток такого варианта аналога динистора - сравнительно узкие пределы регулировки напряжения включения переменным резистором R2. Они тем уже, чем больше ток включения тринистора VS2. Поэтому, чтобы не ухудшать термостабильность аналога, надо использовать в нем тринисгоры с возможно меньшим током включения. Диапазон регулировки напряжения включения аналога можно расширить путем применения стабилитронов с различным напряжением стабилизации.

Регулируемые аналоги динистора найдут применение в автоматике и телемеханике, релаксационных генераторах. электронных регуляторах, пороговых и многих других радиотехнических устройствах.

(РАДИО № 3, 1986 г., с.41-42)
 


Страница 36 из 72
YOU ARE HERE:
© 2009, 2010, 2011, 2012 Mic-ron.ru - Сайт для радиолюбителя, схемы, помощь, радиолюбительские конструкции, журнал радиолюбитель. Форум, фото и видео
Так же схемы и устройства станков, чертежи и принципы работы станков, помогут вам сделать многое своими руками
мини заводы своими руками | 1а616 | самодельное зарядное устройство для автомобильного аккумулятора | регулятор для паяльника | самодельные антенны радиолюбителей | собираем робота |
Rambler's Top100